Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
npj Urban Sustainability ; 3(1):3, 2023.
Article in English | ProQuest Central | ID: covidwho-2288521

ABSTRACT

Currently, the global situation of COVID-19 is aggravating, pressingly calling for efficient control and prevention measures. Understanding the spreading pattern of COVID-19 has been widely recognized as a vital step for implementing non-pharmaceutical measures. Previous studies explained the differences in contagion rates due to the urban socio-political measures, while fine-grained geographic urban spreading pattern still remains an open issue. Here, we fill this gap by leveraging the trajectory data of 197,808 smartphone users (including 17,808 anonymous confirmed cases) in nine cities in China. We find a general spreading pattern in all cities: the spatial distribution of confirmed cases follows a power-law-like model and the spreading centroid human mobility is time-invariant. Moreover, we reveal that long average traveling distance results in a high growth rate of spreading radius and wide spatial diffusion of confirmed cases in the fine-grained geographic model. With such insight, we adopt the Kendall model to simulate the urban spreading of COVID-19 which can well fit the real spreading process. Our results unveil the underlying mechanism behind the spatial-temporal urban evolution of COVID-19, and can be used to evaluate the performance of mobility restriction policies implemented by many governments and to estimate the evolving spreading situation of COVID-19.

2.
npj Urban Sustainability ; 3(1):3, 2023.
Article in English | ProQuest Central | ID: covidwho-2221878

ABSTRACT

Currently, the global situation of COVID-19 is aggravating, pressingly calling for efficient control and prevention measures. Understanding the spreading pattern of COVID-19 has been widely recognized as a vital step for implementing non-pharmaceutical measures. Previous studies explained the differences in contagion rates due to the urban socio-political measures, while fine-grained geographic urban spreading pattern still remains an open issue. Here, we fill this gap by leveraging the trajectory data of 197,808 smartphone users (including 17,808 anonymous confirmed cases) in nine cities in China. We find a general spreading pattern in all cities: the spatial distribution of confirmed cases follows a power-law-like model and the spreading centroid human mobility is time-invariant. Moreover, we reveal that long average traveling distance results in a high growth rate of spreading radius and wide spatial diffusion of confirmed cases in the fine-grained geographic model. With such insight, we adopt the Kendall model to simulate the urban spreading of COVID-19 which can well fit the real spreading process. Our results unveil the underlying mechanism behind the spatial-temporal urban evolution of COVID-19, and can be used to evaluate the performance of mobility restriction policies implemented by many governments and to estimate the evolving spreading situation of COVID-19.

3.
Commun Phys ; 5(1): 270, 2022.
Article in English | MEDLINE | ID: covidwho-2106512

ABSTRACT

Digital contact tracing has been recently advocated by China and many countries as part of digital prevention measures on COVID-19. Controversies have been raised about their effectiveness in practice as it remains open how they can be fully utilized to control COVID-19. In this article, we show that an abundance of information can be extracted from digital contact tracing for COVID-19 prevention and control. Specifically, we construct a temporal contact graph that quantifies the daily contacts between infectious and susceptible individuals by exploiting a large volume of location-related data contributed by 10,527,737 smartphone users in Wuhan, China. The temporal contact graph reveals five time-varying indicators can accurately capture actual contact trends at population level, demonstrating that travel restrictions (e.g., city lockdown) in Wuhan played an important role in containing COVID-19. We reveal a strong correlation between the contacts level and the epidemic size, and estimate several significant epidemiological parameters (e.g., serial interval). We also show that user participation rate exerts higher influence on situation evaluation than user upload rate does, indicating a sub-sampled dataset would be as good at prediction. At individual level, however, the temporal contact graph plays a limited role, since the behavior distinction between the infected and uninfected individuals are not substantial. The revealed results can tell the effectiveness of digital contact tracing against COVID-19, providing guidelines for governments to implement interventions using information technology.

4.
IEEE Transactions on Computational Social Systems ; : 1-13, 2022.
Article in English | Web of Science | ID: covidwho-2042818

ABSTRACT

In response to the repeated outbreaks of the COVID-19, many countries implement the region-specific, multilevel epidemic prevention and control policies. To fully understand the impact of these interventions on urban mobility, it is urgent to analyze spatial-temporal mobility pattern at the neighborhood level and structural changes in urban mobility networks. Here, we construct urban mobility networks among points of interest (POIs), using large-scale anonymous mobility data from de-identified mobile phone users. We comprehensively investigate the changes of urban mobility networks during two waves of the COVID-19 pandemic in Beijing from both graph and subgraph perspectives. Beyond an overall mobility reduction in Beijing, we find that the mobility change is spatially and temporally heterogeneous among different urban regions. We uncover a disproportionately large reduction in long-distance, nighttime, and non-essential travel. This results in a more geographically fragmented, local, and regional network in the pandemic. We demonstrate that these structural changes slow down the spatial spread of the COVID-19 in the mobility network.

SELECTION OF CITATIONS
SEARCH DETAIL